Specific leaf area responses to environmental gradients through space and time.
نویسندگان
چکیده
Plant communities can respond to environmental changes by altering their species composition and by individuals (within species) adjusting their physiology. These responses can be captured by measuring key functional traits among and within species along important environmental gradients. Some anthropogenic changes (such as fertilizer runoff) are known to induce distinct community responses, but rarely have responses across natural and anthropogenic gradients been compared in the same system. In this study, we used comprehensive specific leaf area (SLA) data from a diverse Australian annual plant system to examine how individual species and whole communities respond to natural and anthropogenic gradients, and to climatically different growing seasons. We also investigated the influence of different leaf-sampling strategies on community-level results. Many species had similar mean SLA values but differed in SLA responses to spatial and temporal environmental variation. At the community scale, we identified distinct SLA responses to natural and anthropogenic gradients. Along anthropogenic gradients, increased mean SLA, coupled with SLA convergence, revealed evidence of competitive exclusion. This was further supported by the dominance of species turnover (vs. intraspecific variation) along these gradients. We also revealed strong temporal changes in SLA distributions in response to increasing growing-season precipitation. These climate-driven changes highlight differences among co-occurring species in their adaptive capacity to exploit abundant water resources during favorable seasons, differences that are likely to be important for species coexistence in this system. In relation to leaf-sampling strategies, we found that using leaves from a climatically different growing season can lead to misleading conclusions at the community scale.
منابع مشابه
Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity
Elevation gradients are frequently used as space-for-time substitutions to infer species' trait responses to climate change. However, studies rarely investigate whether trait responses to elevation are widespread or population-specific within a species, and the relative genetic and plastic contributions to such trait responses may not be well understood. Here, we examine plant trait variation i...
متن کاملCommunity Functional Responses to Soil and Climate at Multiple Spatial Scales: When Does Intraspecific Variation Matter?
Despite increasing evidence of the importance of intraspecific trait variation in plant communities, its role in community trait responses to environmental variation, particularly along broad-scale climatic gradients, is poorly understood. We analyzed functional trait variation among early-successional herbaceous plant communities (old fields) across a 1200-km latitudinal extent in eastern Nort...
متن کاملHistological Responses of Two Wheat Species to Azospirillum Inoculation under Dryland Farming
In this experiment the effect of inoculation with Azospirillum on the flag leaf and spike rachis anatomical features and also on grain yield and grain weight was investigated for the first time in bread and durum wheats during 2015-2016 growing season under semi-arid condition. The crop yield increased due to the inoculation with Azospirillum with a maximum yield increase of about 8.0 per cent ...
متن کاملFoliar nitrogen responses to elevated atmospheric nitrogen deposition in nine temperate forest canopy species.
Despite its ecological importance, broad-scale use of foliar nitrogen as an indicator of ecosystem response to atmospheric N deposition has heretofore been obscured by its poorly understood intrinsic variability through time, space, and across species. We used a regional survey of foliar N conducted within a single growing season to observe that eight of nine major canopy tree species had incre...
متن کاملPlasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species
Functional trait plasticity is a major component of plant adjustment to environmental stresses. Here, we explore how multiple local environmental gradients in resources required by plants (light, water, and nutrients) and soil disturbance together influence the direction and amplitude of intraspecific changes in leaf and fine root traits that facilitate capture of these resources. We measured p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 95 2 شماره
صفحات -
تاریخ انتشار 2014